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Abstract

Labor composition by gender, age, and education has undergone dramatic changes
over the last forty years in the United States. Furthermore, the volatility of total
market hours differs systematically between genders, age groups, and education
groups. I develop a large-scale business cycle model, along with a new computa-
tion method, and show that these changes in labor composition account for up
to 30% of the observed changes in aggregate volatility over this period of time.

Keywords: Business Cycle, Demographic Composition, Computational
Economics

1. Introduction

This paper uses a structural model to investigate the possible significance
of demographic changes on aggregate volatility. Through regression analysis,
Jaimovich and Siu (2009) (J-S) found that changes by age played a significant
role in determining business cycle volatility over the last 40 years.1 Meanwhile,
labor composition changes by gender and education have been equally dramatic
(see for instance Katz and Autor (1999) for the US, Katz and Freeman (1994)
for a cross-country comparison) and appear to be correlated to the ones by age.
This evidence prompts the question: how much gender, age, and education com-
position affect business cycle volatility?2

Email address: alessandro.mennuni@soton.ac.uk (Alessandro Mennuni)
1The finding is robust to considering a larger pool of countries (Lugauer and Redmond

(2012)), or exploiting the variation in demographic change across the United States (Lugauer
(2012b)). Lugauer (2012a) reconciles the result with a search and matching model. Janiak and
Monteiro (2011) find that differences in tax rates explain some of the differences in aggregate
volatility across countries through their effects on the age distribution of labor.

2Finding the channels through which these changes affect business cycle volatility is inter-
esting from a positive perspective, and it may also be important for policy. For instance, if
the drivers are gender and educational changes, policies that affect their composition may have
business cycle repercussions.
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To address this question I build an overlapping generations model in which
males and females make educational and marriage decisions. The model builds
on the perfect foresight model of Heathcote et al. (2010) and extends it to an
environment with aggregate uncertainty. To test the relationship between the
dramatic demographic path observed in the US economy over the past 40 years
and business cycle volatility, the model is calibrated to match the average rel-
ative volatility of the groups’ labor inputs and the evolution of the labor force
composition, which derives partly from the endogenous response to productivity
shocks identified from the data, and partly from exogenous trends in educational
attainment costs, fertility rates and female time costs.3

A computational challenge arises from the fact that the model is solved for a
period of large transition, this makes standard perturbation methods–the typi-
cal technique used to solve large scale models–an inaccurate solution method.4

To address this issue, I develop a technique which consists of applying per-
turbation methods at many points over the equilibrium path. The solution is
much more accurate than that found by applying perturbation methods only to
the deterministic steady state, and can be applied to a broad class of dynamic
stochastic general equilibrium (DSGE) models. Matlab code is available from
www.southampton.ac.uk/∼alexmen/.

The model is able to replicate the evolution of aggregate output volatility over
time.5 Furthermore, counterfactual simulations suggest that had the labor compo-
sition remained trendless at its steady-state levels, business cycle volatility would
have been 17% lower in the early 1970s and close to the observed volatility in the
1980s and 1990s (when there was little volatility). By accounting for part of the
high volatility of the early 1970s and of the slowdown in the 1980s, labor reallo-
cation also accounts for 30% of the Great Moderation, the large volatility decline
in the 1980s, initially documented by Kim and Nelson (1999) and McConnell and
Perez-Quiros (2000). In addition, the business cycle would have been 5% more
volatile than it was over the last decade. This last result suggests that a return to

3To link this model to the data, I use the National Income and Product Accounts, the March
supplement of the Current Population Survey (CPS), and other US demographic information.
Following Attanasio and Weber (1995), I create a synthetic panel by grouping the labor force
by the observables mentioned.

4As Caldara et al. (2012) point out, in practice perturbation methods are the only computa-
tionally feasible method for solving medium- and large-scale DSGE models, but these techniques
guarantee accurate solutions only in the proximity of the steady state.

5The dynamic stochastic general equilibrium literature concerned with changes in business
cycle volatility has mainly focused on the volatility slow-down from the 1980s, which is es-
sentially accounted for by a reduction in the volatility of aggregate shocks (see Arias et al.
(2007) and Smets and Wouters (2007)). The present framework imputes part of the reduction
in volatility to the redistribution of labor.
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times of low business cycle volatility is not likely; in fact, business cycle volatility
can be expected to increase somewhat if labor market composition continues to
follow current trends.6

Relative to J-S, the role of age composition in business cycle fluctuations is
greatly curtailed and attributed instead to changes in gender and especially edu-
cation composition. To assess whether this result might depend on model misspec-
ification, I adapt the analysis of J-S, where business cycle volatility is regressed
over the age composition, to the data generated by the model. I find that the
importance of age composition for aggregate volatility is significant and quanti-
tatively similar to what was found by J-S for the true data. From this result one
cannot conclude that the model understates the role of age composition. On the
other hand, the exercise highlights that regression analysis overstates the impor-
tance of age composition relative to the role it has in the model. This discrepancy
may be due to the fact that the regression is capturing the overall effects of com-
positional changes, including gender and education composition. In the absence
of reverse causality between labor composition (by gender and education) and the
business cycle, it is possible to identify the importance of each factor by including
them all in the regression.7 Once they are included, all of the regressors become
insignificant, inconsistently with the results of the model. Hence, this exercise
suggests that a structural approach is more suitable for this question.

Highlighting how demographic changes are related to the business cycle, this
paper shows that heterogeneity matters for aggregate volatility. This is in contrast
to the general message that has emerged from a reading of the literature on
heterogeneous agents: for example, Krusell and Smith Jr (1998) and Ŕıos-Rull
(1996) find no major differences between the business cycle properties of their
models with heterogeneity either in income and wealth or over the life-cycle and
a representative agent model simulated around the steady state. This paper
instead shows that when heterogeneity changes over time as much as is observed
in the data, the business cycle properties of the model are affected in a way which
is consistent with how aggregate volatility has evolved over time.

Two empirical facts are important for these results:
(i) The proportion of working hours by group has changed over time.

6One intuitive reason for this result is that the fraction of prime age workers (those least
sensitive to business cycle shocks compared with other age groups) declines as the baby boomers
grow older.

7Although it is probably safe to assume that age composition does not respond to business
cycle volatility, the same may not be true of gender and education composition. For example,
there could be a precautionary motive for wives to work as a cushion against fluctuations in
family income, which may increase in periods of high aggregate risk. Similarly, the labor supply
of individuals in different educational groups could respond differently to a change in aggregate
risk.
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(ii) These groups respond differently to the business cycle.
With respect to fact (i): whereas the disproportionately large share of young

workers in the 1970s became of prime age (30 to 55) in the 1980s, there has
been a substantial increase in the hours worked by women and highly educated
workers (i.e. those with college degrees at least). Recently, the proportion of
prime-age workers has started to decline in favor of older workers. With respect
to fact (ii): there is less volatility in the total number of paid hours worked by
prime-age workers compared with either older or younger workers. There is also
less volatility in market hours worked by highly educated workers than by other
workers and by women compared with men.8 Furthermore, the differences in the
variability of hours worked between these groups follow a stable and predictable
path.

A further interesting prediction of the model is that the evolution of labor
supply elasticities is affected by demographic trends. Changes in hours worked by
gender and age and in the education composition of households induce changes
in micro and macro Frisch elasticities. With the adopted utility function, the
evolution of these elasticities is such that the model is successful at predicting
the trends in relative hours volatility, a fact that has not been used to calibrate
the model.9 This finding relates to a growing literature aimed at reconciling
micro and macro estimates of labor supply elasticities by moving beyond the
representative household. For instance, Dyrda et al. (2012) distinguish between
stable and unstable workers and target the average relative volatility of market
hours between these groups. The relationship uncovered here between trends
rather than levels of the relative volatility of hours may help to guide further the
specification of macro models.10

The paper proceeds as follows. In Section 2, a first look at the labor data will
motivate the conjecture that the reallocation of labor across groups plays a role in
business cycle volatility. Section 3 sets up the model and Section 4 parameterizes
it. Section 5 tests the model, and measures the effects of labor reallocation on
aggregate volatility. Section 6 concludes. Appendix A describes the data used,
Appendix B offers a description of the computation technique and Appendix
C details the estimation of some parameters of the production function and the

8This fact is all the more surprising given that at the individual level, hours worked by
women are more volatile than for men.

9To match the average relative volatility by gender, however, it has been necessary to cal-
ibrate preference parameters so that the female labor supply is less elastic than that for men.
This contradicts micro estimates (see Blundell and MaCurdy (1999)) and seems an interesting
puzzle that characterizes further the discrepancy between micro and macro elasticities.

10This finding also highlights how demographic changes lead to changes in behavior and fur-
ther justifies the adopted structural approach compared with reduced form ‘accounting identity’
calculations wherein behavior is taken as given, as pointed out by Stock and Watson (2003).
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identification of the shocks.

2. Stylized facts

As it is well known, aggregate output volatility in the U.S. increased during
the early 1970s and declined during the 80s and 90s.11 Recently, volatility has
increased again and there is renewed curiosity about its future unfolding. To
relate these facts to the labor force composition, following Gomme et al. (2005)
and J-S, I use data from the March supplement of the CPS to construct annual
series of hours for the demographic groups considered. Figure 1 shows the share
of paid hours worked over time by gender, age (young (15–29), prime age (30–55)
and older workers) and low and high education (at least four years of college).

As is shown in the first two columns of Table 1, hours worked by prime age
workers increased relative to those by other age groups, moving from an average
of 58% prior to 1984 to an average of 71% from 1984.12 By contrast, hours by
the young fell, while hours by the old remained more stable. Furthermore, the
cyclical volatility of hours is substantially lower for prime age workers as initially
documented by Clark and Summers (1981): after removing the trend from each
series,13 the standard deviation of hours is 2.37% for the young, 1.36% for the
prime and 1.87% for older workers. In addition, hours volatility of the prime
relative to the young and old even reduces over time, as shown in Figure 2,
second panel.

The relative increase in prime-age hours and the fact that hours are less volatile
for this age group may have contributed to the observed reduction in aggregate
hours volatility. These two facts also characterized the distribution of hours by
gender and education.

As shown in Table 1, hours worked by women increased relative to those by
men between the first and second sub-sample. It is less well known however
that hours worked by men are more volatile than hours worked by women: the
standard deviation of hours is 1.29% for women and 1.87% for men. Furthermore,
the relative volatility is remarkably stable over time as shown in Figure 2, first
panel.

Similarly, the share of the highly educated increased relative to that of the less
educated and the cyclical volatility of the highly educated is lower. Figure 2,

11See Kim and Nelson (1999), McConnell and Perez-Quiros (2000) and Stock and Watson
(2003) among others.

121984 is the reference year adopted by the literature as the beginning of the great moderation.
See for instance Stock and Watson (2003)

13Here and throughout the paper I use the Hodrick-Prescott (HP) filter with a smoothing
parameter of 6.28 as suggested by Ravn and Uhlig (2002). Using 10 as suggested by Baxter
and King (1999), or looking at growth rates, essentially does not affect the results.
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upper right-hand panel, shows how the relative volatility of hours over time has
a kink around the mid 80s; it remains however true over the whole sample that
the relative volatility between the two groups is smaller than one. Since hours
may be measured with error, Figure 2, lower right-hand panel, shows the relative
volatility of employment by education; apart from the period 87-92 just after the
kink, the ratio is always below 1.14

Table 1: Hours Volatility by Gender, Age and Education

Share of hours 67-83 Share of hours 84-10 St. dev St.dev(84−00)
St.dev(67−83)

Age
Young 30.11 20.39 2.37 91.82
Prime age 58.35 70.72 1.36 79.12
Old 11.54 8.89 1.87 87.08

Gender
Women 33.88 42.19 1.29 70.50
Men 66.12 57.81 1.87 90.38

Education
Low 81.69 70.36 1.16 82.13
High 18.31 29.64 1.90 99.72

Notes: numbers are expressed in percentage terms. Share of hours is the ratio of hours by each
group to total hours.

It is important to notice, however, that hours volatility for each group decreased
in the Great Moderation period as shown in the last column of Table 1.15 In the
light of this consideration, it becomes even more remarkable how, although the
volatility of total hours by group moves over time, the relative volatility remains
stable.

3. The Model

In each period, the economy is populated by a continuum of individuals and
an equal random number p0 of males and females are born. Following Heathcote
et al. (2010), the life cycle of an individual comprises 3 sequential stages: edu-
cation, matching and work. The first decision—high or low education—is made
by a newly born individual before entering the marriage market. At this point,

14Weights and classifications in the CPS data are such that data are essentially comparable
over time. It is known however that comparability does not hold in some cases (see for instance
Abraham and Shimer (2002)); the observed kink might be partly due to some reclassification
that induced discrepancies over time.

15To highlight this volatility slowdown, the Great Moderation period is ended in year 2000
in order not to confound this period with the more turbulent past decade.
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members of the opposite sex are randomly matched (no one remains single). For
tractability, these two stages happen during the first period of life.16 From the
second period of life, the couple enters the working stage and jointly chooses hours
of work for husband and wife, as well as consumption and savings.

3.1. Education

In each period the newly born have to make a discrete choice between college (h)
or lower schooling (l). When they are born, they draw an idiosyncratic cost κ of
acquiring high education from the distribution κ ∼ F g(κ), with g indicating male
(m) or female (f). This cost captures in reduced form the utility and financial
factors that make acquiring a college degree costly and is assumed log-normal:

ln(κ) ∼ N(k̄g, υg). (1)

With this simple specification, it is possible to match the evolution of the ed-
ucation composition through changes in k̄g. Individuals’ decisions are made by
comparing their education cost with the value gain upon entering the labor mar-
ket with higher education: M g(h;ω) −M g(l;ω). M g(e;ω) is the gender-specific
expected lifetime utility of entering the marriage stage as a function of education
e ∈ {h, l} and all the other relevant state variables represented by ω.17 They
choose higher education if M g(h;ω) −M g(l;ω) > κ. For each gender, the share
of the highly educated in the cohort just born is therefore

qg(ω) = F g (M g(h;ω)−M g(l;ω)) . (2)

3.2. Marriage

At this point, individuals are characterized by gender g and education e. Men
and women match according to the gender-specific probability πg

em,ef
(ω)∈ [0, 1].

The expected value upon entering the matching state for a woman of education
level ef is

M f (ef ;ω) = πf
h,ef

(ω)V (h, ef ;ω) + πf
l,ef

(ω)V (l, ef ;ω), (3)

where V (em, ef , ω) is the expected lifetime utility of a household with education
pair em and ef . A similar expression can be derived for Mm(e, ω):

Mm(em;ω) = πmem,h(ω)V (em, h;ω) + πmem,l(ω)V (em, l;ω). (4)

16The role of marriage is not predominant but is kept as in the framework of Heathcote et al.
(2010) because it can improve the model capacity to predict the evolution of relative hours
volatility by gender and education.

17As is discussed in section 3.6, ω contains all the shocks, the distribution of assets across
households, and the distribution of households by age and education of husband and wife.
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Enrollment rates qg(ω) and matching probabilities πg
em,ef

(ω) jointly determine the
education composition of newly formed households. For instance, the fraction
of new households formed by men with high education and women with low
education is

qm(ω)πmh,l(ω) = (1− qf (ω))πfh,l(ω). (5)

Since no individual will remain single πmem,l(ω) + πmem,h(ω) = 1 for any em, and

similarly for women: for any ef

πf
l,ef

(ω) + πf
h,ef

(ω) = 1. (6)

One can show that the cross-sectional Pearson correlation between education
levels of husband and wife, a measure of the degree of assortative matching is

% =
qm(ω)πmh,h(ω)− qm(ω)qf (ω)√

qm(ω)(1− qm(ω))qf (ω)(1− qf (ω))
. (7)

Following Heathcote et al. (2010), % is treated as a parameter through which the
probability function πg

em,ef
(ω) is pinned down.

3.3. Work

Households are distinguished by the husband and wife’s education levels em, ef ,
their age j and their amount of assets a. They choose consumption c and assets
a′, and hours of work for each gender lg, in order to solve the following problem:

V
(
em, ef , j, a;ω

)
= max u(c, 1− lm, 1− lf − lh) + βζjE

[
V
(
em, ef , j + 1, a′;ω′

)]
subject to the constraints: ζja

′ + c = a(1 + r) + w(m, j, em)lm + w(f, j, ef )lf ,

a′ ≥ 0 if j = J, a = 0 if j = 1, c ≥ 0, lm, lf + lh ∈ [0, 1], (8)

where r is the interest rate and w(g, j, eg) the wage for each age, education and
gender. ζj ∈ [0, 1] is the survival factor for the household at age j; it is such
that people die for sure at age J , i.e. ζJ = 0.18 When the household is alive,
the period utility function u is increasing, twice continuously differentiable and
strictly concave in its 3 arguments.19 Husband and wife die together and their
period utility u after death is equal to 0, hence V

(
em, ef , J + 1, a;ω

)
= 0 and

18The fact that ζj multiplies a′ in the budget constraint reflects competitive annuity markets,
see Ŕıos-Rull (1996) for a digression.

19The utility function can depend on education and age. To simplify notation, u is not
indexed accordingly.

8



the zero debt constraint in the last period of life J . lh is an exogenous time cost
specific to women.20 The expectation is taken over ω′ given ω.

New households start with zero assets. Thus, the value at the time of forming
a household is equivalent to the expected lifetime utility of a formed household
of age 1 and with zero assets:

V (em, ef ;ω) = E
(
V(em, ef , 1, 0;ω′)

)
. (9)

3.4. Household Distribution and its Law of Motion

Denote page,edu : {1, ..., J}×{h, l}×{h, l} → <+ the mass of households by age
and education of the couple. p′age,edu(1, h, e

f ) = πm
h,ef

qmp0 is the mass of newly
formed households composed of men with high education and women of educa-
tion ef = {h, l}. p′age,edu(1, l, e

f ) = πm
l,ef

(1 − qm)p0 is the mass of newly formed

households composed of men with low education and women with education ef .
Let the mass of older households be defined recursively as p′age,edu(j, e

m, ef ) =

page,edu(j − 1, em, ef )ζj−1.

3.5. Firms

Competitive firms maximize profits using the following production function

y = A1/θ
(
αkθ + (1− α)Lθ

)1/θ
, (10)

where A is total factor productivity (TFP), α is associated with the labor share
of total output and θ measures the complementarity across capital and L, which
is a composite of several labor groups:

L =

(
I∑
i=1

(zini)
σ

)1/σ

. (11)

σ measures the degree of complementarity across groups.21 zis are labor-augmenting
technology shocks specific to each labor group, ni is hours worked by all individ-

20In the absence of a more sophisticated theory of the household, the evolution of this param-
eter will help reproduce the distribution of hours by gender. Its reduction over time captures
in reduced form housework production technology improvements and a fall in child care cost,
which on top of the reducing gender wage gap help explain increases in female market hours.
See among others Greenwood et al. (2005) and Attanasio et al. (2008).

21It is assumed here that all the groups have the same complementarity across them and with
capital. It would be interesting to extend this function to the one introduced by Krusell et al.
(2000) as done by Castro and Coen-Pirani (2008) and Jaimovich et al. (2009) to study the hours
cyclicality by skill and age (see also Johnson and Keane (2007)). However, in the presence of
several groups, this makes it harder to identify the shocks analytically, thereby complicating
the estimation procedure. See Zoghi (2010) for a survey of possible ways to estimate a labor
composition index.
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uals categorized in group i. This specification, distinguishing between labor-
augmenting and a TFP shock makes it possible to match aggregate production
given the inputs, while matching hours and wages through labor demand.22

There is a mapping between groups i (which have an empirical counterpart) and
individuals: each group i is formed of agents of the same gender, age group and ed-
ucation level.23 The mapping is represented by I dummy matrixes χi(g, e

m, ef , j)
which contain zeros and ones depending on whether the labor input of the agent
belongs to group i. So, for instance, group 1 is formed of women, young and with
low education. For a generical i,

ni =
∑
g

∑
em

∑
ef

J∑
j=1

lg
(
em, ef , j

)
page,edu

(
em, ef , j

)
χi(g, e

m, ef , j). (12)

Calling the number of age groups nage, the total number of groups I is 2nage2,
i.e. the two genders times the age groups times the two education levels.

The representative firm hires labor according to the following condition

(1− α)Ay1−θ

(
I∑
i=1

(Aini)
σ

) θ
σ
−1

zσi n
σ−1
i = wi (13)

for every i, where wi is the wage rate for group i; so if χi(g, e
m, ef , j) = 1, then

w(g, j, eg) = wi. Capital is demanded according to the following condition

Aα (k/y)θ−1 = r + δ, (14)

where δ is the depreciation rate of capital.

3.6. State Space

To make rational choices, agents need to know their type.24 They also need
to predict prices, which depend on the shocks and on the distribution of assets
and households across age and education pairs of husband and wife. The next
sub-sections define the state space in more detail.

Exogenous Processes

22By Euler’s theorem, the capital demand equation will also be satisfied with no need for an
extra shock.

23Consistently with the empirical section, there are three age groups: the young (1-10), the
prime age (11-35) and the older agents (36-40).

24A type is gender and the idiosyncratic education shock for someone who is at the education
stage, gender and education for someone who is at the marriage stage, age and education of
husband and wife for households.
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Group-specific productivity levels zi in (11) are the sum of gender, age and
education specific shocks (εg ∈ εg, εage ∈ εage, εedu ∈ εedu) so that

log(zt,i) =
2∑
j=1

εgt,jIg(i, j) +
3∑
j=1

εaget,j Iage(i, j) +
2∑
j=1

εedut,j Iedu(i, j) (15)

for all i, t, where Iedu(i, j) = 1 if education in labor group i is equal to j and zeros
otherwise. Dummies by gender and age are defined the same way. Gender, age
and education-specific shocks may be seen as capturing sectorial shocks and other
aspects of the production process not explicitly modeled, which moves relative
demands of labor inputs. For instance, an increase in women’s productivity may
be capturing an increase in the productivity of a female-intensive sector of the
economy, such as the service sector.

Let the logarithm of the productivity processes εg, εage, εedu, the logarithm of
TFP process A ∈ A and the logarithm of the mass of new born p0 ∈ P0 be AR1
stochastic processes. Furthermore, the mean of the distribution of the cost of
acquiring education k̄ ∈ K for men and women, and women’s housework lh ∈ Lh
are deterministic processes with an AR1 structure.25

Let G ≡ A×εg×εage×εedu×P 0×K2×Lh be the state space for these variables.
Household Distribution
Since the distribution page,edu is a state variable, one needs to define its set. From

how page,edu has been constructed in section 3.4, it follows that it depends on the
series of p0 ∈ P 0, qm ∈ [0, 1] and qf ∈ [0, 1] at the period of birth of each cohort

which is alive.26 page,edu is therefore generated from the set M ≡ P 0J × [0, 1]2J .
Let P be the set of all admissible distributions page,edu generated from the set M .
The state space for each household is

S ≡ {1, ..., J} × {h, l}2 ×K ×G× P ×K(J−1)4

The first dimensions of the state space, {1, ..J}× {h, l}2×K, contain the house-
hold’s state variables: age, education of husband and wife, and asset holdings

which belong to the set K ≡
[
min

(
aj

)
, a
]
, where aj for j = 1, ..., J − 1 are

age-specific lower bounds on the amount of assets implied by the borrowing con-
straint in equation (8). The remaining dimensions of the state space contain
aggregate state variables that affect households’ decisions through prices and
expectations: the shocks, the distribution of households by age and education,
and the distribution of assets across households grouped by age and educational

25Starting with initial values away from their steady states, these two variables will help make
trends in hours by gender and education behave as in the data.

26qf has not been directly used to construct page,edu but it affects πmem,ef .
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composition.27,28,29 Consistently with what was used in previous subsections, the
aggregate state variables are collected in the set

Ω ≡ G× P ×K4(J−1).

3.7. Equilibrium

Definition 1. A recursive competitive equilibrium is composed of discounted val-
ues M g(eg;ω), college enrolment rates qg(ω), matching probabilities πg

em,ef
(ω) for

each gender g, a value function at the time of forming a household V (em, ef ;ω),
a value function for households V(em, ef , j, a;ω), consumption and assets func-
tions c(em, ef , j, a;ω) and a′(em, ef , j, a;ω), labor functions lg(em, ef , j, a;ω′) for
each gender, a household’ distribution function p′age,edu(e

m, ef , j;ω) and pricing
functions r(ω) and w(g, j, e;ω) such that the following conditions are satisfied:

1. qg(ω) is determined by (2). The matching probabilities πg
em,ef

(ω) satisfy

(5)–(6) and are consistent with the degree of assortative matching ρ in (7).
Moreover, the pre-marriage discounted utilities M f and Mm are defined by
(3) and (4). The pre-labor value V is defined by (9).

2. The decision rules for consumption, labor and assets c, a′, lm and lf , and
the value function V solve the household problem in 3.3.

3. Capital and labor inputs satisfy equations (13)–(14).

4. Labor markets clear. i.e. equation (12) holds for all i.

5. The capital market clears: k =
∑

em

∑
ef

∑J
j=1 a(em, ef , j)p′age,edu(e

m, ef , j;ω).

6. The goods market clears: c+ k′ − k(1− δ) = y,
where c =

∑
em

∑
ef

∑J
j=1 c(e

m, ef , j, ω)p′age,edu(e
m, ef , j;ω)

and k′ =
∑

em

∑
ef

∑J
j=1 a

′(em, ef , j, ω)p′age,edu(e
m, ef , j;ω).

7. The distribution of households evolves as stated in section 3.4.

27Since there is no idiosyncratic risk across households belonging to the same group (defined
by age and education of husband and wife), the state variable individual asset holdings is also
part of the distribution of assets across all groups. While this repetition is not necessary and is
avoided in the code, it is used here because it simplifies notation.

28The distribution of capital across groups only involves J − 1 age groups because at age 1
households hold zero assets.

29The distribution of idiosyncratic shocks κ affects enrollment rates qg only through the mean
k̄. κ for each individual is therefore omitted from this characterization of the state space.
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4. Parametrization

It is useful to divide the parameters of this model into two categories: the
production function parameters and all the other parameters. It is possible to
calibrate the parameters belonging to the latter group by drawing on an extensive
literature. On the other hand, the presence of heterogeneous groups of workers
with their specific shocks makes the production side non-conventional. There-
fore, some of its parameters need to be estimated. The procedure is detailed in
appendix Appendix C. Parameter values are reported in Table 4.

4.1. Preferences, depreciation and survival probabilities

The utility specification for a generic household of age j, with education levels
em = {h, l} for men and ef = {h, l} for women is:

uj,em,ef (c, l
m, lf ) = ln(c) + γmj,em

(1− lm)1−σme

1− σme
+ γf

j,ef

(1− lf − lh)
1−σfe

1− σfe
. (16)

σme and σfe regulate the Frisch elasticity of labor supply. Heathcote et al. (2010)
calibrate this parameter to be the same for both men and women and indepen-
dently of education. I find that this way one cannot match how the male-female
ratio of hours volatility evolves over time, an important fact for this paper. In
particular, the Frisch elasticity of women has to be lower than that of men in
order to make female hours less volatile than male ones.30 Similarly, the labor
supply of the highly educated has to be less elastic than that of the less educated
in order to match hour volatility by education.31 I calibrate the four parameters
σme and σme with em, ef = {h, l} in order to match four moments:
a. The relative volatility of hours by gender,
b. The relative volatility of hours by education,
c. The relative volatility of hours by age (prime over young and older workers),
d. An average elasticity equal to 2.32

Table 2 shows how closely these moments are matched. To give a sense of the
elasticities implied by the chosen levels of σme and σme , table 3 reports the average
labor supply elasticity by various labor groups. As can be seen in the table, with
the selected utility specification the model naturally matches the fact that prime

30This parametrization contrasts micro estimates which suggest that labor supply for women
is less elastic than for men, see for instance Blundell and MaCurdy (1999). For the aim of this
paper, it is however necessary to match the relative volatility between male and female hours.
The inability to reconcile micro estimates with the relative volatility between male and female
hours is a puzzle which may be interesting to study further in future research. Section 5.2.3
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Table 2: Calibration of elasticities

Relative hours volatility Average elasticity

gender age education
Targets 0.7 0.7 0.6 2.0
Model 0.6 0.8 0.6 2.0

Table 3: Average elasticities

Total Young Prime Old High educ. Low educ.

Total 2.0 2.2 1.9 2.2 0.70 2.5
Men 2.6 2.9 2.5 2.8 0.9 3.2
Women 1.2 1.3 1.1 1.3 0.4 1.4

Notes: Statistics are averages of the Frisch elasticities for each representative agent
in a given group, weighted by their mass. For instance, total elasticity is equal to∑

em
∑

ef

∑J
j=1(1/σ

m
e (1−lm(j,em,ef ))/lm(j,em,ef )+1/σf

e (1−l
f (j,em,ef ))/lf (j,em,ef ))page,edu(e

m,ef ,j;ω)

2
∑

em
∑

ef

∑J
j=1 page,edu(em,ef ,j;ω)

.

age workers are less elastic than the young and the old.33

γmj,em and γf
j,ef

are such that the model in steady state matches average hours
per capita by gender, age and education between 2000 and 2007.

The discount factor β is equal to 0.97 and the depreciation rate of capital is
0.07. With these values, and given the parameters of the production function,
the average capital output ratio is 2.26, the interest rate 0.04 and the saving rate
0.14.

Survival probabilities ζj for j = {1, ..., J} come from the National Center for
Health statistics Vital statistics of the US, 1992. Since this paper focuses on

discusses the implications that this misspecification may have for the results of the paper.
31The fact that these parameters are gender and education specific may reflect unmodeled

labor contracts and matching frictions specific to sectors or types of worker.
32The business cycle literature typically chooses a high level of Frisch elasticities in order to

have sufficient aggregate hours volatility, which tends to be significantly lower than that found
in the data. The chosen level of 2, lies in between micro estimates and RBC calibrations. See
Ljungqvist and Sargent (2011), Prescott et al. (2009) and Erosa et al. (2011) among others for
a discussion of how extensive margins can be incorporated into a life cycle model to reconcile
micro and macro labor supply elasticities.

33Since these parameters are not age specific, it is remarkable that it is possible to match
the relative volatility of hours by age. With these preferences, the Frisch elasticity of labor
supply is 1/σge (1 − lg)/lg. Thus, this elasticity is lower for prime age workers because they
work more hours. See Jaimovich et al. (2009) for an alternative approach based on imperfect
substitution in production between age groups and Dyrda et al. (2012) for a discussion of the
two approaches.
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active workers, attention is restricted to people from age 20 to 60. Therefore, no
one can leave for more than 40 periods and ζ40 = 0.

4.2. Trends in the composition of labor

p0, the share of new infants is modeled as an exogenous AR1 process with
parameters ρp0 , γp0 . This quite simplistic way to model birth has the purpose
of generating variable fertility that matches changes in the labor distribution by
age; see Ŕıos-Rull (2001) for a discussion of alternative fertility regimes.

The initial level and the persistence ρh of the deterministic AR1 process for
female housework lh, is calibrated to replicate trends in the labor composition by
gender and education. lh is zero in steady state. Its initial level accounts for 35%
of the average total working time for women, i.e. lh/(l

f + lh) = 0.35.
k̄m and k̄f ; the means of the cost distribution of acquiring education - equation

(1) - are modeled as deterministic AR1 processes. Their steady state levels are
such that the model matches the share of the highly educated by gender between
age 25 and 29 in the period 1999-2007, which is qf = 0.36, qm = 0.29. Initial
conditions and persistence are picked to replicate trends in the labor composition
by gender and education between 1967 and 2010. The variance of the cost distri-
bution of acquiring education for men υm is set equal to 10, that for women, υf

is equal to 5. The lower variance for women implies more response to the wage
premium, which is consistent with the increase in female enrolment rates over
time.34

Following Heathcote et al. (2010), the degree of assortative matching in the
marriage market, % in equation (7), is set equal to 0.517.

Table 4 summarizes the parameters of the model, other than the ones of the
productivity processes, which are set in Appendix Appendix C.

To run simulations, as initial conditions for the remaining state variables I take
the values that solve the model for a steady state in which the level for the shocks
is the average in the first 5 years of the sample (1967-1971).

Figure 3 shows actual versus predicted shares of hours by sex, age and education;
the model does quite well at replicating these trends. However, shares by age
cannot be matched perfectly because of the presence of migration, absent in
the model, and because the initial age distribution does not perfectly match the
data.35

34These variances are quite large in the sense that they imply a low elasticity of the enrolment
rates to wage premia. This feature is convenient because it permits matching the evolution of
enrolment rates with the evolution of the other parameter of the education cost distribution:
the average cost of acquiring education k̄g, which can be easily changed in the counterfactual
experiments aimed at removing trends in the labor distribution by education.

35The initial age distribution at the beginning of the sample is not stationary. One could
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Table 4: Summary of Parametrization

Parameter Moment to Match Value

β interest rate 0.97
δ capital-output ratio 0.07

σfl relative group volatility and average labor supply elasticity 6.0

σfh relative group volatility and average labor supply elasticity 40.5
σml relative group volatility and average labor supply elasticity 1.0
σmh relative group volatility and average labor supply elasticity 6.7
ζj age-specific survival rates see text
γgj,eg average market hours by group see text

ρp0 , γp0 share of 20-year-olds over population 0.5, 0.1
k̄m evolution of educational composition for men see text
k̄f evolution of educational composition for women see text

lh, ρh evolution of female market hours 0.05, 0.975
υm sensitivity of educational composition to wage premium for men 10
υf sensitivity of educational composition to wage premium for women 5
% intra-family correlation of education at ages 25-35 0.517
σ see appendix Appendix C 0.91
α labor share 0.41
θ see appendix Appendix C -0.25

5. Quantitative analysis

5.1. Computation

The computation of this model presents some challenges that come from the
fact that the state space is quite large: 805 variables, of which 324 are state
variables. Large DSGE models can be handled by perturbation methods around
the steady state.36 This method generates two sources of inaccuracy: one due to
the assumption of certainty equivalence and the other one due to the fact that
policy functions are evaluated at points different than the deterministic steady
state. When simulations remain fairly close to the deterministic steady state,
the solution method is quite accurate even for models that induce large Jensen
inequalities (Caldara et al. (2012)). This is not the case here because the model is
simulated from starting conditions which are quite far from the steady state. To
resolve this, I propose a new methodology which essentially consists of applying
repeated local approximations over the entire transition path, between the initial

impose it but it would be inconsistent with the other initial conditions found by solving for an
initial steady state.

36See Ŕıos-Rull (1996) for an application of linear quadratic methods in a model that shares
a similar OLG structure to the one in this paper.
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conditions and the steady state.37

The algorithm is detailed in Appendix B and a brief summary of its logic is
given here. The goal is to find the equilibrium path given initial conditions for the
state vector, call x0, and time series for the shocks. A path from x0 to the steady
state is drawn through the policy functions obtained by perturbation around the
steady state. Then, new perturbations are computed backward along this path:
from the proximity to the steady state back to the initial conditions. The policies
approximated at the initial conditions are used to compute the next point, x1. To
compute x2, a new path is drawn through the steady state policies, treating x1

as initial conditions. New perturbations are computed along this path from the
proximity to the steady state till x1. The policies approximated at x1 are used to
compute the next point x2. Then, the algorithm iterates until initial conditions
coincide with the final period of the time series of the shocks. In practice, for all
the applications tried so far, the maximum error from the equilibrium conditions
is several orders of magnitude smaller with this method than with 2nd order
perturbation of the steady state. Figure 15 compares the solution computed with
these two methods applied to a version of the RBC model with full depreciation,
for which the true solution has analytical form.38

5.2. Testing the model

Before carrying out the main experiments for which the model has been built,
some tests are performed in order to get a sense of how satisfactory a description
of the economy it provides, at least for the dimensions that are relevant for this
study. The tests proposed below have direct implications for the counterfactual
experiments aimed at quantifying the importance of labor reallocation to aggre-
gate volatility. Therefore, the degree of success over these dimensions will help
assess how reliable the outcomes of these experiments are.

5.2.1. Aggregate volatility trend

Since this model is restricted to match the observed changes in the labor compo-
sition and shocks come from disaggregated data, it is interesting to see whether it
matches the typical aggregate statistics analyzed by the RBC literature initiated
by Kydland and Prescott (1982) and whether it replicates the observed trends in
output volatility.

37By limiting the local approximations to the transition path, the number of grid points does
not increase with the number of state variables.

38Since the true solution of this model is linear in the logs of the variables, Taylor expanding on
the logs of the variables gives the exact solution with both methods. To introduce approximation
error, the Taylor expansion is computed on the variables in levels. This way the computed policy
functions do not coincide with the true ones, but are only tangent around the point where the
Taylor expansion has been taken.

17



Table 5, column 1 contains data and model standard deviations for the whole
sample (67-10). It can be inferred that the model accounts for 1.29/1.45, or
about 89 % of total volatility, more than the 60-85% typically accounted for by
RBC models.39 Two features of the model that contribute to the higher volatility
compared to other RBC models are that it distinguishes between TFP and labor
augmenting shocks, and that these shocks are less persistent than the Solow
residual of an aggregate Cobb-Douglas production function (see table C.13). The
lower the persistence of shocks is, the lower are the offsetting wealth effects they
induce and the greater is the labor response.

To quantify and compare the volatility slowdown of the mid 80s, columns 2
and 3 show the standard deviation of output over a period of high volatility
(67-83) and over the period of moderate volatility (84-00). The model predicts
the volatility slow down between the first and second sub-samples; the slowdown
predicted by the model is actually larger than the one in the data, where volatility
reduced by 38 log points (log(1.75)− log(1.20)), as opposed to the 51 log points
predicted by the model. This prediction is actually in line with measurements of
the moderation computed with aggregate data.40 Strikingly, between the periods
84 − 00 and 00 − 10 the model predicts a log(1.22) − log(.99) or 21 % increase
in volatility, which is the same size as that in the data (log(1.48) − log(1.20),
equal to 0.21). An alternative way to appreciate the extent to which the model
can replicate aggregate volatility over time is offered by Figure 4, which shows
the trend over time of aggregate output volatility.41 This Figure shows that the
model is not only successful at predicting the business cycle volatility decrease
from the 80s mentioned, but it can also replicate the initial volatility increase
from 67 to the early 70s. The Figure, however, highlights a misalignment in the
volatility trend from the 90s.

39See for instance Prescott (1986). Volatility is measured as the standard deviation of log
output minus its HP-trend.

40For instance, Arias et al. (2007) computes a moderation of about 50% using quarterly
NIPA data. The statistic changes very little when using annual NIPA data. Another difference
between NIPA and CPS data is that using the latter dataset, output volatility started declining
in the late 70s rather than in the 80s. Indeed, Blanchard and Simon (2001) suggest that the
sharp and sudden volatility decline of the 80s masks a trend decline which started earlier.
With CPS data, when the turbulent sub-sample is restricted to the period 70-76, the volatility
slowdown is of 50%.

41Output volatility is measured as the standard deviation over three consecutive periods.
This statistic is computed period by period to construct a time series. To highlight its trend
the Figure plots the HP trend with smoothing parameter 6.28
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Table 5: Standard deviation of output

67− 10 67− 83 84− 00 00− 10

Data 1.45 1.75 1.20 1.48
Model 1.29 1.64 0.99 1.22

Notes: Statistics are computed after having HP-filtered the data.

5.2.2. Aggregate business cycle statistics

Table 6 reports standard deviations and correlations with output of consump-
tion, investments and total hours. Consistently with the data, the model predicts
that while consumption is less volatile than output, investments are much more
volatile. Similarly to other RBC models, the model matches correlations rather
well but under-predicts the volatility of hours. These statistics remained fairly

Table 6: Standard deviations relative to output and correlations

Standard deviations Correlations with output

Data Model Data Model

Output 1 1 1 1
Consumption 0.8 0.6 0.90 0.61
Investment 4.6 4.4 0.94 0.87
Hours 0.9 0.5 0.85 0.91

Notes: Statistics for Consumption and investment in the Data column are com-
puted using NIPA data.

stable over the whole sample and cannot be held responsible for the changes in
aggregate volatility. See for instance Arias et al. (2007).

An interesting result of this model is that it reconciles the employment-productivity
puzzle,42 which lies at the root of an important critique to the RBC model. See
Gaĺı (1999). In this model, the correlation of labor productivity (output over total
hours) with output is 0.003 and the correlation of labor productivity with hours
is −0.078. This result relies on the fact that distinguishing between labor-specific
and TFP shocks, upward shifts in the labor demand schedules do not necessarily
imply an increase in output over hours as with a simple Cobb-Douglas technology
and homogeneous hours. See also Ballern and van Rens (2011). The discrepancy
between labor productivity and output is also reflected in the labor share: the fit
with the empirical labor share shown in Figure 5 is remarkable if compared with

42The near zero and often negative correlation between total hours and labor productivity
found in the data. This fact is puzzling for RBC models, which predict this correlation to be
very high. See Hansen and Wright (1992).
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the constant labor share predicted with the benchmark Cobb-Douglas production
function. Figure 6 shows actual versus predicted wages by sex, age and education.

5.2.3. Trends in Hours Volatility Ratios

Labor supply elasticities have been calibrated to match the average hours
volatility ratios across gender, age and education. But does the model predict
how these statistics have evolved over time? Figure 7, shows these trends in the
data and in the model. Apart from a misalignment in the 70s, the model predicts
the trendless path by gender, the decreasing ones by age (prime over young and
old) and the increasing one by education.

This result is best understood in the light of the Frisch labor supply elasticity
by gender, which, with the adopted utility function is 1/σge(1− lg)/lg, decreasing
in lg. The fact that hours volatility ratio by age is smaller than one is consistent
with the fact that elasticity is lower for prime age workers, who work more hours.
The fact that in the model hours volatility ratio by age is decreasing over time
depends upon the fact that prime age hours increase over time.

The increasing relative hours volatility ratio by education is mainly due to an
increase in the volatility of highly skilled wages. However, this effect is mitigated
by the contrasting effect that the increase in white collar hours has on Frisch
elasticities.43

The fact that Frisch labor supply elasticities are decreasing in labor input, com-
bined with the increase in female hours over time is consistent with the findings of
Blau and Kahn (2007). To reconcile the model with the roughly constant trend in
hours volatility by gender, marriage plays a role: as female hours and education
levels increase, men respond more to shocks because their offsetting wealth effect
decreases as the wealth they earn becomes a smaller fraction of the whole family
wealth. The contrary is true for wives: the more women work and the higher their
education level, the less responsive they are to the income of men. This aspect
is fostered by the increasing share of families with highly educated women who
command a high share of family income. This implication of the model and the
effect on relative volatilities that the increasing female labor input has on Frisch

43This last effect on Frisch elasticities is important to match the trend in Figure 7. This
observation can be appreciated by observing Figure 8, produced with the following alternative
utility function with constant Frisch elasticities:

uj,em,ef (c, lm, lf ) = ln(c)−

γmj,em (lm)
1+σm

e

1 + σme
− γf

j,ef
(lf − lh)

1+σf
e

1 + σfe

 . (17)

In this case, the relative volatility by education has a much steeper and counterfactual trend.
This exercise also shows how matching trends in relative hours volatilities is not obvious and it
is a useful exercise to choose among alternative utility specifications.
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elasticities make relative hours volatilities by gender essentially trendless, as in
the data.

These results are reassuring given the important role played by these statistics
in the paper. Indeed, part of the merit of the structural approach adopted is
being able to predict how these statistics evolve over time, so that then one can
rely on the model to predict how they would have evolved in the counterfactual
experiments. The extent to which these trends change in the counterfactuals
is relevant to quantifying the overall role of compositional changes for business
cycle volatility: changes in these trends are an indirect effect of compositional
changes that may have non-negligible importance in addition to the direct effect
of changing the weights of groups which differ by volatility.44

5.3. Counterfactual Experiments

The counterfactual experiments consist of changing the exogenous long run
trends in the amount of female housework lh, the birth rate dynamics p0 and the
cost of acquiring education–k̄m and k̄f–so that shares remain closer to their steady
state levels, while maintaining all the shocks as in the original simulation.45

5.3.1. Removing all trends

Figure 9 shows hours shares by gender, age and education in the counterfactual
and original simulations. As can be seen from comparing with the original sim-
ulation, most of the trends in these shares have been removed. Table 7 contains
the standard deviation of output during the sub-samples of interest: the period
before the great moderation 1967-1983, and the period of the great moderation:
1984-2000 (until before the 2001 recession). It is also instructive to focus on the
initial 10 periods of especially high volatility, 1967-1976 (column 1), and the last
part of the sample: 2000-2010 (last column).46 As can be deduced from the table,
aggregate volatility in the counterfactual is log(1.53)−log(1.81), or approximately
17% lower than in the original simulation in the 70s, essentially unchanged in the

44In particular, it is reassuring that the model is consistent with these trends, given that the
average relative volatilities have been matched through a calibration that contrasts micro esti-
mates. Presumably, additional structure missing in this model should be included to reconcile
relative volatilities with micro estimates on labor supply. However, this missing structure does
not seem to prevent this model from predicting the endogenous evolution of these trends.

45Alternatively, one could try to keep share of hours at their initial levels. However, this would
imply a different calibration of the parameters of the exogenous fertility rates, educational costs
and female housework, thereby implying a different steady state for the model. Then, the
differences between the original and counterfactual simulation would depend not only on a
different transition, but also on a different calibration, making the comparison between the
original and counterfactual simulation less transparent.

46This last sample starts in year 2000, rather than 2001, to capture the 2001 recession:
starting in 2001, the fact that output contracted would not be apparent.
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Table 7: Standard deviation of output over time

67− 76 67− 83 84− 00 00− 10

Original simulation 1.81 1.64 0.99 1.22
Counterfactual simulation 1.53 1.42 1.00 1.28

Notes: statistics are computed on the deviation from the HP-trend of the logs.

80s and 90s and 5% more volatile in the last decade. To get a visual sense of how
volatility is affected over time, Figure 10, first panel, shows the trend of actual
and counterfactual cyclical volatility measured as a 3-year roll over standard de-
viation of output. The fact that counterfactual volatility is slightly higher in the
2000s (and from the late 90s as indicated in Figure 10) seems interesting: since
in the counterfactual, share of hours are roughly constant at their steady state
levels, counterfactual volatility in the last decade can be taken as a prediction of
the future volatility that we should expect as share of hours by gender, age and
education are converging to a steady state. From this prediction one may hazard
that a return to the great moderation is unlikely; in fact, given the size of the
shocks, volatility should slightly increase rather than decline.47

To get a concise statistic that quantifies the amount of the great moderation
explained, I follow J-S and proceed as in section 5.2.1, comparing the standard
deviations in the first sub-sample (1967-1983) and in the second one (1984-
2000). Between the two sub-samples, aggregate output volatility decreased by
log(1.64)− log(.99) = 50.47 log points. Had the shares remained stable as in the
counterfactual, we would have observed a reduction in volatility of log(1.42) −
log(1.00) = 35.07 log points. Therefore, these demographic changes account for
(50.47-35.07)/50.47 or 30.53% of the moderation in output.

Figure 10, second panel, shows the volatility of total hours; as can be seen,
labor reallocation accounts for a sizable part of the high volatility in the 70s.48

This pattern can be traced back to the elasticities of labor supply shown in Figure
11. As can be observed, in the counterfactual elasticities were lower at the begin-
ning of the sample. Instead, they become higher than in the original simulation
from the late 90s for men, the young, and workers with low education. Thus,
these groups are likely to be the ones responsible for the fact that counterfactual

47It should be noted that this prediction abstracts from the aging of the population on top
of the retirement of the baby boomers as in the model life expectancy is constant.

48In the original (counterfactual) simulation the standard deviation of the percentage devia-
tion of total market hours from the trend is 0.90 (0.80) between 67 and 76, 0.84 (0.75) between
67 and 83, 0.44 (0.44) between 84 and 2000 and 0.48 (0.49) between 2000 and 2010. There-
fore, hours volatility is 12 % lower between 67 and 76, unaffected in the period of the great
moderation and slightly (2 %) higher between 2000-2010.
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volatility becomes higher from the late 90s. One issue with this exercise is that
removing female housework, directly affects female Frisch elasticities. Thus, an
alternative exercise is also carried out where, instead of removing female house-
work, the parameter γf that multiplies female leasure in the utility function (16)
is rescaled. Other things equal, this parameter does not affect Frisch elasticities.
Indeed labour supply elasticity is slightly higher at the beginning but the business
cycle results are not that much affected: hours volatility between 67 and 76 is
now 11% rather than 12% lower. The model accounts for 25% rather than 30%
of the great moderation in output.

Lastly, Figure 12 shows how labor reallocation played an important role in
output levels: in the counterfactual, output is much higher in the early part of the
sample: this depends on the fact that in the counterfactual the labor distribution
is roughly constant at the end-of-sample levels, with a higher level of education
and prime age workers, and more hours worked by women.49

5.3.2. Removing trends one by one

What is the importance of each of the three factors? Table 8, lines 2,3 and 4
report the outcomes of a counterfactual experiment where only one of the long-
run trends is removed. Table 9, column 1, reports the various contributions to the

Table 8: Standard deviation of output over time

67− 76 67− 83 84− 00 00− 10

Original simulation 1.81 1.64 0.99 1.22
Gender 1.76 1.59 1.01 1.25
Age 1.75 1.59 0.98 1.25
Education 1.62 1.50 1.00 1.27

moderation; the other columns report the evolution of the volatility ratio relative
to the original simulation.
These numbers suggest that the major contributors to changes in volatility were
changes in the labor composition by education, followed by age and gender.

The results do not change qualitatively and all the conclusions remain true
with different parameter values concerning the complementarity of labor groups
in the production function (where values ranging between 0.7 and 1 have been
considered), the average elasticity of labor supply (where values ranging between

49See Marimon and Zilibotti (1998) for an analysis of the importance of reallocation to growth:
they find that sectoral effects account for more than 80% of the long-run differentials across
countries and industries in employment growth.
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Table 9: Standard Deviation ratios

Great Counterf.-Actual Counterf.-Actual Counterf.-Actual
Moderation St.Dv. 67-76 St.Dv. 84-00 St.Dv. 00-10

All 30.5 -16.8. 1.0 4.8
Gender 11.2 -2.8 2.0 2.5
Age 6.2 -3.4 -1.0 2.5
Education 19.9 -11.1 1.0 3.9

Notes: numbers are expressed in percentage terms. Great Moderation is a measure of the
size of the volatility reduction that is accounted for by changes in the composition of labor.
Counterfactual-Actual St.Dv. measures the percentage difference between output and counter-
factual output volatility.

1.8 and 3 have been considered) and changing the age classes, moving the young-
to-prime age threshold to 34 and the old threshold to 50.

5.3.3. Comparison with Jaimovich and Siu (2009)

The result confirms the finding of J-S that the age composition has an impact.
However it suggests that its effect is not as important. A similar answer is found
when only looking at hours: counterfactual volatility is 4.4% lower in the first
decade, it is also 4% lower in the 80s and 1% higher from the mid 90s. An
intuition for this result goes as follows: removing age trends implies that there
are fewer young in the first part of the sample, which should imply less volatility.
This effect is mitigated by the fact that the fewer young, the higher the relative
volatility by gender and education.50 This result is consistent with the fact that
relative volatility differences by gender are more pronounced for the young as
pointed out by Gomme et al. (2005), in Table 10.51

Notwithstanding the intuitive explanation above, the reader may be left won-
dering whether the result depends on the fact that the model generates counter-
factual data that understate the role of age relative to the true data. To see if this
is the case, I adapt the panel regression analysis of J-S to the single-country data
generated by the model. If the regression on the simulated data correctly detects
a minor role for the age composition, then it is likely that the model understates
the role of the age composition. If instead the regression overstates the role of
age relative to what it is in the model, so that the data generated by the model
are consistent with the results found by J-S, then one may not conclude that the

50Indeed, in the absence of age trends, the average relative volatility by gender and education
is 0.64 and 0.61; higher than those in the original simulation, 0.63 and 0.56

51Furthermore, McGrattan and Rogerson (2004) find that the decline in hours worked by
older individuals is primarily accounted for by a decline in the hours worked by males, whereas
the increase in hours of prime-age workers comes primarily from females.
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model understates the role of the age composition.52

The regression considered is:

σt = α + γsharet + εt (18)

where σt is a measure of output volatility at year t generated by the model and
sharet is the fraction of the population share which is not in its prime age (young
and old).53, 54 Following J-S, results are reported for heteroskedasticity and two-
period autocorrelation robust standard errors constructed using the Newey-West
estimator. See Table 10. The coefficient γ is significant and it implies a stronger

Table 10: Regression analysis: age

Coef. Newey West Std. Err P > |t|
γ .038 .015 .019
α -.002 .005 .75

role for age than the true one in the artificial economy: when the independent
variable share moves from its first sample average (41%) to its second sample
average (32%), the relative change in predicted volatility is 23%, which is quite
close to the results found by J-S. This result suggests that the regression overstates
the role of age.

A possible explanation is that the regression may be capturing the overall ef-
fects of demographic changes, including those in gender and education, which are
correlated with the changes by age. Is it possible to verify this conjecture by
simply including the labor composition by gender and education as regressors?
It depends on whether they are actually exogenous or endogenous. Indeed, to
motivate the structural methodology, it has been mentioned that movements in
the labor composition by gender and education are partly endogenous, thereby
invalidating the results of a regression analysis. It is possible to assess the impor-
tance of these endogenous implications in the model and see whether in practice
a regression would be biased.55 With this aim, I augment equation (18) by in-
cluding regressors for the labor composition by gender and education (including

52This case would not strictly imply that the analysis of J-S is biased as they are also exploiting
the cross-country panel dimension, which here is ignored.

53σt is constructed by taking a 5-period standard deviation of the residual between log output
and its HP-filter.

54Reverse causality is not an issue because population shares are exogenous by model
construction.

55There are several channels through which the labor force composition is affected by ag-
gregate risk: female income is less sensitive to aggregate risk than male income, so the gender
composition of hours can be affected by the level of aggregate risk. For a similar argument, the
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the share of males and low education over total hours):

σt = α + γageshareaget + γedushareedut + γgendsharegendt + εt. (19)

The results from the estimation of equation (19) are reported in table 11. The

Table 11: Regression analysis: age, gender and education

Coef. Newey West Std. Err P > |t|
γage -.022 .026 .399
γedu .002 .065 .976
γgend .094 .068 .178
α -.039 .013 .070

coefficient for age is no longer positive, and all the coefficients tend to neutralize
each other as none of them are significant. This exercise suggests that endogeneity
plays a role and motivates further the structural methodology adopted in this
paper.

6. Conclusion

This paper has documented that while the composition of the labor force by
gender, age and education has changed substantially over the last 40 years, the
relative volatility within these groups followed stable trends. These facts lead
to the conjecture of this study: that changes in the composition of labor have a
causal impact on the evolution of aggregate volatility over time.

To take into account the possible change in behavior induced by these demo-
graphic changes and the fact that they might be affected by aggregate fluctuations,
a general equilibrium model of the business cycle with overlapping generations,
educational and marriage choices has been developed. The model accounts for the
initial increase, subsequent slowdown and recent surge in aggregate volatility and
is consistent with several cross-sectional facts. The demographic changes consid-
ered play a non-negligible role in aggregate volatility. Changes in education levels
have the greatest impact of all the factors considered. The role of age composition
changes in business cycle fluctuations is relevant but greatly curtailed compared
with what previously found through reduced-form analysis by J-S.

hours composition by education and educational choices are affected by aggregate risk. Fur-
thermore, the effect of aggregate risk on the hours composition may vary over time with the
movements in labor supply elasticities that this paper has uncovered, which affect within-group
variances.
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One challenge has been to find a solution method for this large model which
guarantees sufficient precision over the dramatic demographic transition path
that has characterized the last 40 years. This has been done by developing a
technique that can be applied to a wide range of dynamic stochastic general
equilibrium models, which essentially consists of applying perturbation methods
at many points along the equilibrium path.
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7. Figures

Figure 1: Share of hours by gender, age and education
Notes: young workers range from 15 to 29 years old. Prime age ranges from 30 to 55. The old
are those 56 and above. By high education is meant at least four years of college.

Figure 2: Hours and employment volatility ratio by gender, age and education.
Notes: In each period t, the figure plots the ratio of the standard deviation of hours over a
period of 19 years centered at year t. Confidence intervals are calculated assuming that the
time series follows an AR 1 process.
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Figure 3: Data vs model share of hours

Figure 4: Output volatility over time, data versus simulation

Figure 5: Labor share model vs data
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Figure 6: Wages model vs data

Figure 7: Data vs model relative hours volatility
Note: In each period t, the figure plots the ratio of the standard deviation of hours over a period
of 19 years centered at year t.

Figure 8: Data vs model relative hours volatility (high over low education) with
alternative preferences
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Figure 9: Shares of hours, original versus counterfactual simulation

Figure 10: Aggregate income and hours volatility, original versus counterfactual
simulation

Figure 11: Average elasticities, original versus counterfactual simulation
Note: statistics are averages of the elasticities for each representative agent in a
given group, weighted by their mass. For instance, total elasticity is equal to∑
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Figure 12: Output, original versus counterfactual simulation

Figure 13: TFP and labor productivities

Figure 14: Group factors versus labor-specific shocks z.
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Figure 15: Capital and consumption from the analytical example of Appendix
Appendix B compared with the solution computed with local and dynamic per-
turbation.

Appendix A. Data

The data series for aggregate consumption are from the Bureau of Economic
Analysis (BEA). Aggregate capital is constructed by multiplying the capital out-
put ratio by aggregate income constructed using CPS data.
The capital output ratio is constructed by dividing non-residential fixed assets
with GDP from BEA.
Survival probabilities are from the National Center for Health statistics Vital
statistics of the US 1992, Vol II, sec. 6 life tables page 13, Washington: Public
Health Service. 1996.
The remaining data are from the March supplement of the CPS, downloaded from
the Integrated Public Use Microdata Series (King et al. (2010), cps.ipums.org).
Data for hours and wages are constructed by including individuals of at least 15
years old who reported their gender and education level and declared they worked
a positive amount of weeks and for a positive wage.

Appendix B. Dynamic Perturbation

Following Schmitt-Grohe and Uribe (2004) and Gomme and Klein (2011), the
model can be expressed as

Et[f (xt+1, yt+1, xt, yt)] = 0, (B.1)

where Et is the expectation operator given information at time t, xt is a vector of
state variables sorted so that all shocks enter in the lower part of the vector, yt is a
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vector containing all the other variables of the model.1 A recursive representation
of the solution to Equation B.1 which satisfies transversality conditions takes the
form

yt = g(xt, σ) (B.5)

and
xt+1 = h(xt, σ) + σηt+1, (B.6)

where, following Schmitt-Grohe and Uribe (2004), σ is a scalar that scales the
variance of ηt = [0, ut], where {ut} is an i.i.d. sequence of innovations with zero
mean and variance matrix Σ. An approximated solution can be found by Taylor
expanding the deterministic version of equation B.1 around its steady state, where
xt = xt+1 = xss, yt = yt+1 = yss such that

f (xt+1, yt+1, xt, yt) = 0. (B.7)

This can be done, for instance, by applying the algorithm of Gomme and Klein
(2011). Taylor expansions of Equation B.7 are done around the deterministic
steady state because this point is typically the easiest point to find where Equation
B.7 holds and equations B.5-B.6 hold with σ = 0.2 However, if there is another
point x̂ in the state space where one knows the values x̂1 = g(x̂, 0), ŷ = h(x̂, 0)
and ŷ1 = h(x̂1, 0) so that

f (x̂1, ŷ1, x̂, ŷ) = 0,

1To familiarize with the notation, consider the following simple model:

maxE0

∞∑
t=0

βt log(ct)

subject to feasibility
kt+1 + ct = kt(1− δ) + eAtkθt (B.2)

and to the productivity process

At = ρAt−1 + σut, ut ∼ d(0, varu). (B.3)

The equilibrium conditions are the last two equations B.2-B.3 and

1

ct
= βEt

(
1

ct+1
(1 +At+1αk

α−1
t+1 − δ)

)
. (B.4)

With xt = [kt, At] and yt = ct, the three equilibrium conditions B.2-B.4 are easily casted into
equation B.1.

2A point x1, y1, x, y that satisfies Equation B.7 but not B.5-B.6 is on a path that violates
transversality conditions.
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one could take the Taylor expansion there and have a solution approximated
around that point. The algorithm that I am about to introduce seeks to find such
points and use them to derive better approximated policy functions with which
to run a simulation.

Call

F (x, σ, h, g) ≡ Ex (f [h(x, σ) + ση, g(h(x, σ) + ση, σ), x, g(x, σ)]) , (B.8)

where Ex is the expectation over η given the state variables x. Pick ε̂ > 0. The
algorithm seeks to find points {xt}T1 given an initial condition x0 and for a given
sequence of shocks’ innovations {ut}T1 , with precision

|F (xt, 0, hxt , gxt)| < ε̂ for t = 0, ..., T − 1, (B.9)

where hxt , gxt are policy functions approximated around xt.
3

1. Put t0 = 1.

2. Taylor expand f (xss, yss, xss, yss)), where xss, yss is the deterministic steady state
of the model, and obtain the policy functions hxss(x, σ), gxss(x, σ). If these are
stable, then go to step 3 (for stability, see for instance Blanchard and Kahn
(1980)).4

3. Put h̃(·) = hss(·) and g̃(·) = gss(·)

4. Simulate from xt0−1 with the policy function h̃(·) and with σ = 0, generating a
time series {x̃t}T̄t0 with T̄ > T .5 If this time series does not converge to the steady
state, increase T̄ and go back to step 4.

5. Put t = T̄ .

6. Pick a point x̂ = αx̃t−1 + (1− α)x̃t with α ∈ (0, 1] such that |F (x̂, 0, h̃, g̃)| < ε̂.6

3Note that in equation (B.9) σ = 0. This is because the expectation operator in equation
B.8 is replaced by the certainty equivalence assumption of zero innovations.

4This algorithm is described for models that are stable around the steady state. In fact, it
could be extended to models that do not have a steady state provided that a point (x̂1, ŷ1, x̂, ŷ)
such that f (x̂1, ŷ1, x̂, ŷ) = 0 is known. Indeed, it has worked for models that are locally unstable
in some regions of the state space.

5Since σ = 0, this simulation is independent of any time series for the innovations to the
shocks. It provides a path along which to move backward from the steady state.

6One can start with α = 1, thereby moving from x̃t to x̃t−1. However, sometimes this

movement is too large so that |F (x̂, 0, h̃, g̃)| > ε̂; in this case it is advisable to pick a smaller α.
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7. If |F (x̂, 0, h̃, g̃)| > 0, find x̂1 and ŷ such that f (x̂1, ŷ1, x̂, ŷ) = 0 where ŷ1 =
g̃(x̂1, 0).7

8. Derive the functions hx̂(·), gx̂(·) Taylor expanding f (x1, y1, x, y) = 0 around the
latter point (x̂1, ŷ1, x̂, ŷ).

9. Put h̃(·) = hx̂(·) and g̃(·) = gx̂(·).

• If α < 1, increase it to a number smaller or equal to 1 and such that
|F (x̂, 0, h̃, g̃)| < ε̂ where x̂ has been updated accordingly: x̂ = αx̃t−1 + (1−
α)x̃t. Go back to step 7.

• If α = 1 and t > t0, put t = t− 1 and go back to step 6.

• If α = 1 and t = t0, policy functions at xt0−1 have been found. Store
xt0 = h̃(x̂, σ) + ση, yt0−1 = g̃(x̂, σ) and go to the next step.

10. If t0 = T the whole solution has been found! Otherwise, put t0 = t0 + 1 and go
back to step 3.

Variations of this algorithm can be conceived; for instance, to increase speed
one could avoid going backward through all the points on the equilibrium path,
but make larger jumps from the steady state until x0.

The iteration procedure over the equilibrium path is reminiscent of the Parametrized
Expectation Approach (PEA. See Den Haan and Marcet (1990) and Marcet and
Lorenzoni (1999)): both algorithms break the curse of dimensionality by only ap-
proximating the global policy function over the equilibrium path rather than over
the entire state space. In practice however, the PEA may show some convergence
problems that make its implementation hard, especially for high-dimensional ap-
plications.8 An important advantage of the proposed method is that, unlike the
PEA, it does not iterate on the equilibrium path and therefore does not rely on a
contraction mapping, which explains why convergence problems do not arise. On
the other hand, the invertibility conditions necessary to derive policy functions
through perturbation methods need to be satisfied over all the points where the
perturbation is applied; these invertibility conditions have not been violated in
the models solved so far.9

7This step is similar to a step in the policy function iteration algorithm. Here, this step makes
sure that the function f (x̂1, ŷ1, x̂, ŷ) = 0 holds and hence a Taylor expansion is admissible.

8See in this respect the improvements made by Judd et al. (2009) (typically, this approach
is also less accurate because it interpolates across the points).

9In addition, this method is only valid on the specific equilibrium path generated by the
initial conditions and the time series of innovations. However, it is possible to simulate for a
long time horizon and then interpolate over the solution to obtain policy functions valid over
the whole ergodic set.
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To evaluate the accuracy of this algorithm, I test it on the model in note 1,
equations B.2-B.4, and with full depreciation, for which the analytical solution is
known. I then compare the true equilibrium path {x∗t , y∗t }T0 with the one generated
by this algorithm, {x∗∗t , y∗∗t }T0 , and with the one generated by a second-order
expansion around the steady state {x∗∗∗t , y∗∗∗t }T0 . For an initial condition quite far
from the steady state, x0 = [.2kss,−.5], with variance of the shock equal to 0.007,
10 the maximum error

max
t

[max (|x∗t − x∗∗∗t |, |y∗t − y∗∗∗t |)] (B.10)

using second-order approximation around the steady state is 0.0077. Using the
proposed algorithm, the maximum error

max
t

[max (|x∗t − x∗∗t |, |y∗t − y∗∗t |)]

is 2.2610−5, which is 340 times smaller than taking the expansion only around
the steady state. The simulation computed with the two methods is compared
with the true solution in Figure 15. I conclude that this method makes a notable
improvement in terms of accuracy with respect to perturbation around the steady
state.11

In this example the code takes 27 seconds to run a simulation of 60 periods on
a laptop. Solving the main model of the paper in section 3 takes about 11 hours
and 20 minutes. As a measure of accuracy, I compute the error

|f (Et(xt+1), Et(yt+1), xt, yt) | (B.11)

for all t. Abstracting from Jensen’s inequality, a solution to the model is such that
the error (B.11) is equal to 0 for all t. Hence, the size of this error gives a sense
of the accuracy of the approximated solution. The maximum error with local
approximation around the steady state is 0.29, while that with this algorithm is
1.710−12.12

10This is the typical calibration of a TFP shock in the RBC model. The other parameters
are θ = .33, ρ = .99 and β = .99.

11Furthermore, the accuracy seems robust to initial errors. In fact, using a small T̄ such that
the initial path does not converge to the steady state and the backward procedure starts with
an initial error, has a negligible effect on accuracy. Intuitively, step 7 corrects for such errors.

12Although this result is quite reassuring, it should be noticed that an explosive solution, or
a solution which alternates explosive to implosive patterns, can be consistent with this result.
However, from a graphical inspection, the solution does not present an oscillating path and all
variables converge to a steady state.
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Appendix C. Production function estimation

Appendix C.1. Estimating the complementarity across labor groups

First divide (13) for each i by the same equation for group 1.(
zi
z1

)σ (
ni
n1

)σ−1

=
wi
w1

. (C.1)

Multiplying by ni
n1

and taking logs one gets 13

log(zi)− log(z1) + log

(
ni
n1

)
= 1/σ log

(
wini
w1n1

)
, (C.2)

which gives I−1 linear equations from which σ can be estimated directly, without
knowing the other parameters of the production function.14 In order to facilitate

notation I define εi ≡ log(z1) − log(zi), λ ≡ log
(
ni
n1

)
and x ≡ log

(
wini
w1n1

)
. I

assume that the vector of εis follows an AR1 process:

εt = ν̄ + ρλεt−1 + νt, (C.3)

where ν̄ is a vector and ρλ is a scalar. I rewrite (C.2) with the new notation

λt = 1/σxt + εt + µt, (C.4)

where µt is an I − 1 vector of measurement errors. Since λt affects xt, the latter
is not orthogonal to εt + µt. However, through (C.3)–(C.4) one can derive the
following expression:

λt = 1/σxt + ν̄ + ρλ(λt−1 − 1/σxt−1) + νt + µt − ρλµt−1. (C.5)

Similarly to Arellano and Bond (1991), I pick the parameters in order to match
the following moment conditions: E[x′t−2−i(∆ηt)], E[λ′t−2−i(∆ηt)], with i = 1, .., 5,
where ηt = νt+µt−ρλµt−1 and ∆ stands for first difference.15 I use these 10(I−1)
moments to estimate ρλ and σ.16 σ is estimated to be 0.91, which suggests that

13The multiplication by ni

n1
is done to work with wage income rather than wage rates, thereby

attenuating measurement error.
14It is equivalent to dividing (13) for each i by the same equation for a group j different to

group 1 as done in equation (C.1). This expression can be obtained as the ratio of (C.1) for
groups i and j and therefore does not convey any further information.

15µt−2, which is present in ∆ηt, could influence λt−2 and xt−2. Only λt−2−i and xt−2−i, with
i ≥ 1, are uncorrelated with µt−2.

16ν̄ has been removed by differentiating ηt
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there is not very much complementarity across these groups.17 As can be inferred
from equation (C.1), the fact that σ is close to one depends upon the fact that
changes in the input of labor in one group have little impact on relative wages
across groups.

A virtue of this specification is that the estimation above is independent of the
complementarity between labor and capital, θ: this parameter is calibrated to
−0.25 in accordance with the literature that suggests a parameter value which
induces more complementarity than the Cobb-Douglas case. See for instance
Leandoacute;n-Ledesma et al. (2010) and Choi and Ŕıos-Rull (2009). α is such
that the model predicts the average labor share found in the data: in the model,

the capital share of output is Aα
(
y
k

)θ
. α is identified by normalizing total factor

productivity A to be one on average, its value is 0.4.18

Table C.12 summarizes the key parameters estimated.

Table C.12: Estimation Results

σ ρλ α θ

Value 0.909 0.527 0.409 -0.250
St. Error 0.021 0.056 - -

Appendix C.2. Identifying the productivity shocks

From the labor demand equation for group one, one can derive:
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Since zi/z1 has been identified through (C.2), it is convenient to rewrite the
expression above as follows
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. (C.7)

17Including more or fewer lags does not change the result that groups are quite substitutable
into the production process. This result persists when the estimation is carried out with residuals
in levels, considering x and λ in first differences, or adding a trend to equation (C.3).

18The average level of A is not pinned down and can be normalized: for any level of A, it
is possible to find a value of α and the shocks zi such that output is preserved, as well as the
marginal productivity of capital and of labor in each group. Since α is a constant, changes in
A and zi are identified independently of the normalization on the average level of A.
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Substituting this into the production function and solving for A gives

A =

yθ − wi

(∑I
i=1(zini/z1)σ

)
nσ−1

1

 /(αkθ). (C.8)

As a result, z1 can be backed out from (C.7) and finally, zi for every i can be
derived through (C.2). a ≡ log(A) is assumed to be an AR1 process:

at = ρaat−1 + ua,t. (C.9)

A time trend is found not to be significant. Figure 13 panel A, shows the time
series for A. The initial trend depends on the fact that the process starts below
the steady state.19

Appendix C.3. Decomposition of labor productivity shocks

Consistently with the theoretical model, group-specific shocks zi in (11) are
decomposed into gender, age and education-specific shocks (εg, εage, εedu) so that

log(zt,i) =
2∑
j=1

εgt,jIg(i, j) +
3∑
j=1

εaget,j Iage(i, j) +
2∑
j=1

εedut,j Iedu(i, j) + νt,i (C.10)

for all i, t, where Iedu(i, j) = 1 if education in labor group i is equal to j and
zeros otherwise. Dummies by gender and age are defined the same way. νt,i is a
residual capturing what cannot be accounted for by a combination of the other
shocks.20, 21 The problem can be written in vectoral form:

log(zt) = Λεt + νt, (C.11)

where zt and νt are respectively the vector of I labor specific shocks and residuals
at time t, εt is the vector of the seven group-specific shocks by gender, age and
education. Λ is a I × 7 matrix that collects the group dummies introduced in
equation (C.10). εt are identified by minimizing the sum of squares of residuals
νt:

min
εt

ν ′tνt. (C.12)

19A time trend on the neutral shock would have also been inconsistent with a balanced growth
path.

20Residuals νt,i come about from the fact that labor-specific shocks zi for all the groups
cannot be accounted for by only 7 shocks: 2 by gender, 2 by education and 3 by age.

21This exercise being a mere decomposition, it does not affect the estimation of the comple-
mentarity across the labor groups.
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This problem can be considered a factor model with factors εt and where the
factor loading matrix Λ is given by the theoretical structure.
Figure 14 shows how closely Λεt can replicate labor-specific shocks zt. As is
evident from the figure, the the difference is negligible and hence in the simulations
I will only include Λεt and abstract from νt. I assume an AR1 process for εt:

εt = γε + ρεt−1 + ut, (C.13)

where ρ is assumed to be a diagonal matrix.22 Figure 13 panels B,C and D plots
these shocks. Table C.13 contains parameter values estimated with OLS and the
covariance matrix for the innovation components.

Table C.13: Estimation Results

εf εm εl εh εyoung εprime εold A

ρ .89 .87 .89 .89 .90 .89 .90 .89
γ .05 .10 .05 .09 .01 .07 .05 0

Innovation covariances
εf 0.0048 0.0047 0.0033 0.0031 0.0032 0.0050 0.0045 0.0021
εm 0.0050 0.0032 0.0032 0.0033 0.0050 0.0047 0.0022
εl 0.0024 0.0021 0.0020 0.0035 0.0030 0.0015
εh 0.0021 0.0020 0.0033 0.0030 0.0014

εyoung 0.0025 0.0033 0.0032 0.0014
εprime 0.0054 0.0046 0.0022
εold 0.0046 0.0020
A 0.0010

22A time trend was found not to be significant and therefore it is omitted. Over the sample,
the model predicts growth that essentially comes from the transition of the shocks, capital and
demographics to the steady state.

45


	1302 cover
	Title: Labor Force Composition and Aggregate Fluctuations 

	1302
	Introduction
	Stylized facts
	The Model
	Education
	Marriage
	Work
	Household Distribution and its Law of Motion
	Firms
	State Space
	Equilibrium

	Parametrization
	Preferences, depreciation and survival probabilities
	Trends in the composition of labor

	Quantitative analysis
	Computation
	Testing the model
	Aggregate volatility trend
	Aggregate business cycle statistics
	Trends in Hours Volatility Ratios

	Counterfactual Experiments
	Removing all trends
	Removing trends one by one
	Comparison with Jaimovich and Siu (2009)


	Conclusion
	Figures
	Data
	Dynamic Perturbation
	Production function estimation
	Estimating the complementarity across labor groups
	Identifying the productivity shocks
	Decomposition of labor productivity shocks



